
Introduc)on	to	Debugging	
with	DDT	

Stéphane	Ethier	
(ethier@pppl.gov)	

h8p://w3.pppl.gov/~ethier/PICSCIE/DEBUGGING	
	

PICSciE	mini-course	
April	17,	2018	

Important	links	

•  h8ps://developer.arm.com/docs/101136/latest/ddt	
•  h8ps://www.princeton.edu/researchcompu)ng/	
•  h8ps://www.princeton.edu/researchcompu)ng/faq/debugging-with-ddt-on-the/	
	
•  h8ps://w3.pppl.gov/~ethier/PICSCIE/DEBUGGING/training_ddt.tar.gz	

–  Can	use	“wget”	on	Linux	or	“curl	–O”	on	MacOS	
–  tar	–zxvf	training_ddt.tar.gz			to	unpack	the	files.	Will	creat	a	directory	“training_ddt”	

Goals	of	this	class	

•  Give	an	overview	of	the	debugging	process	
•  Learn)ps	and	tricks	from	the	trenches	
•  Gain	prac)cal	knowledge	of	

–  the	debugging	process	
–  Simple	debuggers	for	C/C++,	Fortran,	and	Python	
–  Advanced	graphical	debuggers	

Debugging	is	not	easy…	

•  When	a	code	crashes	it	usually	writes	out	a	cryp)c	error	
message	
–  The	cpu	processes	machine	instruc)ons,	not	the	C	or	Fortran	source	

code	that	you	wrote…	
–  Instruc)ons	in	the	final	executable	program	have	probably	been	

rearranged	for	op)miza)on	purposes	
•  You	are	in	luck	if	the	error	happens	at	the	beginning	of	the	

execu)on…	usually	it	does	not!	
•  In	a	large	parallel	code,	how	many	processes	triggered	the	

problem?	1,	2,	all	of	them?	Was	it	related	to	inter-process	
communica)on?	

Typical	error	messages	

•  SIGFPE:	floa)ng	point	excep)on	
–  Ofen	controlled	be	compiler	op)ons	
–  division	by	zero	
–  square	root	of	a	nega)ve	number	
–  log	of	a	number	less	or	equal	to	zero	
–  Does	not	always	crash	your	code!	(unless	compiled	to	do	so…)	

•  The	code	can	keep	going	for	a	long)me	with	“NaN”	values	
•  SIGSEGV:	segmenta)on	viola)on	(see	“man	7	signal”)	

–  invalid	memory	reference	à	e.g.	trying	to	access	an	array	element	
outside	the	dimensions	of	an	array	

–  double	x[100];				x[345]	=	SIGSEGV!	
–  Make	sure	your	shell	“stack	size	limit”	is	set	to	“unlimited”	

•  BASH:		ulimit	-s	unlimited				(put	in	.bashrc)	
•  CSH:					limit	stacksize	unlimited		(put	in	.cshrc)	

Typical	error	messages	

•  I/O	errors	
•  NO	ERROR	MESSAGE	AT	ALL!	

–  The	code	just	hangs	
–  Usually	points	to	a	communica)on	deadlock	in	a	parallel	code	
–  The	results	are	just	plain	wrong…	

•  First	recommenda)on:		Don’t	waste	your)me	
			
																																Use	a	Debugger!!!	

Take	advantage	of	the	compiler	op)ons	

•  Take	the)me	to	go	through	all	the	op)ons	of	the	compiler	that	you	
use	

•  Pay	par)cular	a8en)on	to	the	diagnos)cs	op)ons	under	sec)ons	
with	names	such	as	“debugging”,	“op)miza)on”,	“target-specific”,	
“warnings”	

•  Using	“man	compiler_name”	is	a	good	start	although	most	
compilers	now	have	detailed	online	documenta)on	à	Just	check	
the	company’s	web	site	under	“support”	or	“documenta)on”		

•  (e.g.	h8ps://sofware.intel.com/en-us/intel-sofware-technical-
documenta)on)	

The	-g	compiler	op)on	

•  All	compilers	accept	the	-g	op)on	
•  It	links	the	source	code	to	the	executed	machine	language	code.	
•  The	-g	op)on	is	necessary	when	using	a	debugger	unless	you	are	

REALLY	good	at	deciphering	machine	language.	
•  However,	using	-g	slows	down	the	code	significantly	

–  Removes	op)miza)ons	(unless	one	uses	–gopt	or	–g	–O3)	
–  Start	with	“-g	–O0”	(no	op)miza)on)	for	most	accurate	correspondence	

between	executable	instruc)ons	and	source	code	line	
–  Inserts	a	lot	of	extra	informa)on	in	the	executable	to	help	the	debugging	

process	
•  Running	with	“-g”	is	some)mes	sufficient	to	find	a	bug.	The	code	

crashes	and	indicates	where	the	error	occurred		

“-g”	makes	the	bug	go	away!	

•  Some)mes,	the	fact	of	using	the	-g	op)on	makes	the	bug	go	
away	

•  This	does	not	necessarily	mean	that	the	op)mized	code	
generated	by	the	compiler	is	wrong,	although	it	could	be…	

•  Can	point	to	a	memory	issue,	such	as	a	pointer	accessing	a	
bad	memory	address	when	the	op)mized	code	is	executed	

•  Look	at	your	compiler’s	documenta)on	for	how	you	can	use	
the	-g	op)on	while	keeping	most	of	the	op)miza)ons	intact,	
such	as	-gopt	for	the	PGI	compiler	(Portland	Group),	or	simply	
“-g	–O2”	for	Intel	
–  caveat:	it	can	point	you	to	the	wrong	loca)on	in	the	source	code	

Examples	of	useful	compiler	op)ons	

•  All	compilers	have	op)ons	that	try	to	detect	poten)al	bugs	in	
the	code	
–  Array	bounds	check	(Fortran:	–C,	-Mbounds,	-check	bounds)		

•  Check	for	array	subscripts	and	substrings	out	of	bounds	
•  Should	be	done	on	unop)mized	code	(-O0)	

–  Easier	for	Fortran	than	C/C++	due	to	the	way	pointers	are	treated	
•  In	C	it	is	the	responsibility	of	the	programmer	to	make	sure	that	a	pointer	
always	points	to	a	valid	address	and	number	

Examples	of	useful	compiler	op)ons	

•  Enable	run)me	error	traceback	capability	
–  --trace,	-trace,	-traceback	

•  Make	sure	that	Floa)ng	Point	Excep)ons	(FPE)	are	turned	on	
(e.g.		-fpe0	for	Intel	and	-Ktrap=fp	for	PGI	compiler)	

Warning	op)ons	in	gcc	

•  The	gcc	compiler	has	a	large	number	of	op)ons	that	will	
produce	a	warning	at	compile)me	
–  The	all	start	with		-W…	
–  Example:		-Wunini8alized	warns	if	an	automa)c	variable	is	used	

before	being	ini)alized	
–  -Wall	turns	on	most	of	the	gcc	warning	op)ons	
–  -Werror	makes	all	warnings	into	errors	
–  Different	levels	of	debugging	informa)on	with	–g1,	–g2,	and	–g3	
–  See	“man	gcc”	or	“info	gcc”	

Try	different	compilers	if	you	can	

•  Whenever	you	can,	it	is	always	a	good	idea	to	try	different	
compilers	if	you	have	access	to	different	playorms	or	different	
compilers	on	the	same	playorm	

•  Some	compilers	are	a	lot	stricter	than	others	and	can	catch	
poten)al	problems	at	compile)me	

•  See,	for	example,	the	following	page	for	comparison	between	
Fortran	compilers	in	terms	of	available	diagnos)cs:	
h8p://www.fortran.uk/fortran-compiler-comparisons-2015/intellinux-fortran-compiler-diagnos)c-capabili)es/	

The	code	crashes…	now	what?!	

•  The	first	thing	that	you	need	to	know	is	where	the	code	
stopped	and	how	it	got	there	

•  Each)me	a	program	performs	a	func)on	call,	informa)on	
about	the	call	is	generated.	That	informa)on	includes	the	
loca)on	of	the	call	in	the	program,	the	arguments	of	the	call,	
and	the	local	variables	of	the	func)on	being	called	

•  This	informa)on	is	saved	in	a	block	of	data	called	stack	frame	
•  The	stack	frames	are	stored	in	a	region	of	memory	called	the	

“call	stack”	

Saving	the	stack	in	“core”	files	

•  How	can	one	view	the	stack	if	the	code	crashed??	
•  When	a	code	crashes,	the	system	(normally)	saves	the	last	call	stack	

of	the	code	in	files	named	“core”	(or	“core.#”,	where	#	is	the	rank	
number	of	an	MPI	task	in	a	parallel	code)	

•  No	core	file?	
–  Check	your	shell	limits:		“ulimit	–a”	(bash)	or	“limit”	(csh)	
–  Look	for	“core	file	size”	(bash)	or	“coredumpsize”	(csh)	>	0	

•  On	most	systems,	these	files	are	binary	files	meant	to	be	read	by	
debuggers	
–  Excep)on:	IBM	Blue	Gene	saves	the	informa)on	in	text	form	

•  Of	limited	use	if	the	code	was	not	compiled	with	–g	op)on	that	
links	machine	language	code	to	high-level	source	code	

Examining	the	call	stack	

•  All	debuggers	should	allow	you	to	view	the	call	stack,	or	
simply	stack	

•  Commands	to	look	for	in	the	debuggers	
–  backtrace	(gdb)	
–  where	
–  info	stack	

•  Use	the	“apropos	debug”	command	on	your	UNIX-based	
playorm	to	find	out	which	debugger	is	available	

•  If	working	on	Linux	(most	cases),	“gdb”	should	be	available	

The	gdb	debugger	

•  Official	GNU	debugger	available	under	Linux	
•  Widely	used	for	C	and	C++	code	debugging	
•  Can	also	be	used	with	Fortran	codes	
•  Online	manual	for	gdb	at	“info	gdb”	
•  Can	be	used	within	the	emacs	editor	

–  Can	run	gdb	commands	within	the	emacs	source	code	window	(e.g.	C-x	
SPC	to	set	a	breakpoint)	

•  Online	manual	at	h8p://www.gnu.org/sofware/gdb/current	
•  h8p://www.yolinux.com/TUTORIALS/GDB-Commands.html	
•  On	MacOSX,	the	C	compiler	is	LLVM	(Clang)	and	the	associated	

debugger	is	“lldb”,	which	is	similar	to	“gdb”	but	be8er	used	via	the	
Xcode	GUI	

Reading	core	files	with	gdb	

•  If	code	was	compiled	with	–g	and	“dumped”	core	files	when	it	
crashed,	the	first	thing	to	try	is	the	following:	
	 	gdb executable core.#
 (gdb) where (or backtrace, or bt)

•  The	“where”	command	prints	out	the	call	stack	
•  You	can	also	use	the	DDT	advanced	debugger	to	open	the	

core	file	and	view	the	call	stack…	

Using	“gdb”	
•  Compile	with	“-g	-O0”	to	get	accurate	binary-to-source	correspondence	
•  Start	gdb:		“gdb	executable”	
•  You	get	the	(gdb)	prompt,	where	you	can	type	the	commands:	
 Command	 Abbrev.	 Descrip8on	

help	 List	gdb	command	topics	

run	 r	 Start	program	execu)on	

break	 Suspend	execu)on	at	specified	loca)on	(line	number,	func)on,	
instruc)on	address,	etc.)	

step	 s	 Step	to	next	line	of	code.	Will	step	“into”	a	func)on.	

next	 n	 Execute	next	line	of	code.	Will	NOT	enter	func)ons	

un)l		 Con)nue	processing	un)l	it	reaches	a	specified	line	

list		 l	 List	source	code	with	current	posi)on	of	execu)on	

print	 p	 Print	value	stored	in	a	variable	

I	know	where	the	code	crashes…	what’s	next?	
•  Detec)ve	work	starts	
•  Try	reducing	the	problem	size	and	see	if	the	error	is	s)ll	there	

–  The	smaller	the	be8er	
–  Running	with	only	2	processes	is	ideal	if	your	code	is	parallel	

•  Start	your	code	in	a	debugger	(gdb	or	other)	and	set	a	breakpoint	on	a	line	
executed	before	the	crash	

•  Examine	the	values	of	variables	and	arrays	by	prin)ng	them	out	or	
visualizing	them	(advanced	debuggers)	

•  Step	through	your	code	line	by	line	un)l	you	find	the	problem	
•  Set	other	breakpoints	to	jump	over	long	sec)ons	of	code,	such	as	loops	
•  If	you	know	which	variable	goes	bad,	use	a	condi)onal	breakpoint	to	run	

“un8l”	(gdb)	the	variable	changes	to	a	given	value	
•  Visualizing	the	results	coming	out	of	the	code	may	help	detect	problems	

–  Grid	problems	are	ofen	detected	by	visual	inspec)on	

Python	debugger	
•  The	“pdb”	debugger	is	part	of	Python	
•  Just	insert	the	following	at	any	point	in	your	Python	code:	

 import pdb
 pdb.set_trace()

•  The	execu)on	will	stop	afer	these	lines	and	will	put	you	under	pdb	(you	will	
have	the	(Pdb)	prompt)	

•  Use	“help”	to	see	the	commands	

 (Pdb) help

 Documented commands (type help <topic>):
 ==
 EOF bt cont enable jump pp run unt
 a c continue exit l q s until
 alias cl d h list quit step up
 args clear debug help n r tbreak w
 b commands disable ignore next restart u whatis
 break condition down j p return unalias where

	

Please	use	checkpoint-restart!	

•  Checkpoint	=	write	out	to	files	all	the	informa)on	that	you	need	to	
restart	a	simula)on	from	that	point	

•  Extremely	important	for	codes	that	have	long	run)mes	(>	1	hour)	
–  Allows	you	to	restart	your	simula)on	at	the	point	of	the	latest	checkpoint	
–  Avoid	losing	hours	of	precious	computer)me	
–  Especially	important	for	parallel	codes	($$$)	

•  Extremely	important	when	you	need	to	debug	a	code	that	crashes	
afer	a	few	hours!!	
–  You	can	recompile	the	code	with	–g	and	start	from	the	last	checkpoint	
–  Remember…	“-g”	slows	down	the	code	drama)cally	so	you	want	to	be	as	

close	to	the	crash	as	possible	

Using	restart	files	
•  When	restar)ng	a	simula)on	from	a	checkpointed	state,	

reproducibility	is	very	important	
–  Test	by	running	the	code	to	a	certain	point	and	saving	its	state	at	that	

point	
–  Rerun	the	same	case	but	split	in	2	steps	where	the	2nd	step	uses	

restart	files	generated	by	the	first	step	
–  Compare	the	end	results	of	the	2	simula)ons	à	they	should	be	

iden)cal	
•  The	restart	files	need	to	be	BINARY	files	
•  When	dealing	with	random	numbers,	use	a	reproducible	

random	number	generator	for	which	you	can	save	the	state	
for	restart	purposes	(e.g.	SPRNG		http://sprng.cs.fsu.edu/)	

“priny”	for	monitoring	and	debugging	

•  Many	developers	s)ll	use	“priny”	statements	to	monitor	and	debug	
their	codes	

•  May	be	the	only	recourse	when	running	a	code	at	very	large	
concurrencies	(100,000+	processors)	

•  The	idea	is	simple:	
–  Insert	priny	statements	at	strategic	loca)ons	in	the	code	to	gather	

informa)on	and	try	to	pinpoint	the	faulty	code	line	
•  Advantages	over	other	forms	of	debugging	

–  Easy	to	use	and	always	works	
–  Low	overhead	
–  Works	on	OPTIMIZED	code!	(CAVEAT:	may	change	or	prevent	the	

op)miza)on	of	a	sec)on	of	code.	DON’T	put	in	loops!)	

priny	debugging)ps:	write	to	stderr	
•  For	op)miza)on	purposes,	all	code	output	is	buffered	before	being	

wri8en	to	disk	unless	directed	otherwise	
•  If	the	code	crashes	before	the	memory	buffers	get	wri8en	to	disk,	

the	informa)on	is	lost	
•  It	makes	it	difficult	to	pinpoint	the	exact	loca)on	of	the	failing	

statement	
•  This	is	the	case	when	using	“priny”	or	“write(6,*)”	
•  Write	to	standard	error	as	much	as	possible	since	it	is	not	buffered	

–  fpriny(stderr,…)	in	C/C++	
–  “cerr	<<“	in	C++	
–  write(0,*)	in	Fortran	
–  redirect	output:	mpirun	–np	1024	./a.out	>&	output.out	

•  Explicit	flushing	of	I/O	buffers	with	“fflush()”	(C)	or	“call	
flush(unit)”	(Fortran)	

A	be8er	priny:		ASSERT!	
•  “assert(condi)on)”	is	a	way	to	replace	“if(condi)on)abort();”	
•  If	“condi)on”	is	false,	the	code	aborts	and	outputs	the	loca)on	(line	number)	of	the	

failed	test	
•  Good	way	to	run	“sanity	checks”	every)me	the	code	is	executed	à	Helps	catch	bugs	in	

the	code	
•  Is	part	of	C/C++	and	Python,	and	easy	to	write	your	own	in	Fortran	
•  Check	for	successful	alloca)on:		assert(pointer	!=	NULL)	
•  Use	func)ons	“isnan()”,	“isinf()”,	“isnormal()”	to	catch	NaN	or	Inf	numbers	(in	math.h)	

–  In	FORTRAN,	“if	(x	/=	x)”	is	TRUE	if	x	=	NaN	
•  “assert”	is	equivalent	to	an	“if”	statement	so	it	probably	kills	op)miza)on	in	certain	

cases	(may	prevent	vectoriza)on	on	modern	processors).	Be8er	to	avoid	inser)ng	in	
important	loops	

•  Watch	out	for	trunca)on	error.	Don’t	use	assert(x==y)	if	both	“x”	and	“y”	are	floa)ng	
point	numbers	

Extremely	useful	tool:	VALGRIND	(a	bit	slow	though…)	
•  Valgrind	(http://valgrind.org/)	

–  Framework	for	building	dynamic	analysis	tools	
–  Includes	tools	that	can	automa)cally	detect	many	memory	management	and	

threading	bugs,	and	profile	your	programs	in	detail	
–  Works	with	Fortran	too…	

•  Currently	includes	six	produc)on-quality	tools:	
–  memory	error	detector	
–  two	thread	error	detectors	
–  cache	and	branch-predic)on	profiler	
–  call-graph	genera)ng	cache	and	branch-predic)on	profilers	
–  heap	profiler	

•  Compile	your	program	with	-g	to	include	debugging	info	
–  Using	-O0	is	also	a	good	idea,	if	you	can	tolerate	the	slowdown	
–  With	-O1	line	numbers	in	error	messages	can	be	inaccurate	
–  Use	of	-O2	and	above	is	not	recommended	as	“Memcheck”	occasionally	reports	

unini)alised-value	errors	which	don't	really	exist.	

Valgrind	example	
1 #include <stdlib.h>
2
3  void f(void)
4  {
5  int* x = malloc(10 * sizeof(int));
6  x[10] = 0; // problem 1: heap block overrun
7  } // problem 2: memory leak -- x not freed
8
9  int main(void)
10  {
11  f();
12  return 0;
13  }

$ cc –g –O0 –o test1 test1.c
$ valgrind --leak-check=full ./test1

Valgrind	example:	results	
==1519== Memcheck, a memory error detector
==1519== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
==1519== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==1519== Command: ./test1
==1519==
==1519== Invalid write of size 4
==1519== at 0x4005B6: f (test1.c:6)
==1519== by 0x4005C6: main (test1.c:11)
==1519== Address 0x5183068 is 0 bytes after a block of size 40 alloc'd
==1519== at 0x4C23938: malloc (vg_replace_malloc.c:270)
==1519== by 0x4005A9: f (test1.c:5)
==1519== by 0x4005C6: main (test1.c:11)
==1519==
==1519==
==1519== HEAP SUMMARY:
==1519== in use at exit: 40 bytes in 1 blocks
==1519== total heap usage: 1 allocs, 0 frees, 40 bytes allocated
==1519==
==1519== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1
==1519== at 0x4C23938: malloc (vg_replace_malloc.c:270)
==1519== by 0x4005A9: f (test1.c:5)
==1519== by 0x4005C6: main (test1.c:11)
==1519==
==1519== LEAK SUMMARY:
==1519== definitely lost: 40 bytes in 1 blocks
==1519== indirectly lost: 0 bytes in 0 blocks
==1519== possibly lost: 0 bytes in 0 blocks
==1519== still reachable: 0 bytes in 0 blocks
==1519== suppressed: 0 bytes in 0 blocks
==1519==
==1519== For counts of detected and suppressed errors, rerun with: -v
==1519== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 7 from 7)

Advanced	Graphical	Debuggers	

•  For	Python,	the	Eclipse	developer	environment	with	PyDev	gives	a	nice	
GUI	for	debugging	
–  See	h8p://www.pydev.org/manual_adv_debugger.html	

•  The	2	most	advanced	debuggers	for	C/C++	and	Fortran	are:	
–  Totalview	
–  Allinea	DDT	(Allinea	Forge)	

•  Both	of	them	are	designed	to	debug	large-scale	parallel	codes	
•  All	the	HPC	systems	on	campus	have	DDT		

–  Type	“/usr/licensed/bin/ddt	&”	
–  Or	“/usr/licensed/bin/ddt	–start	executable”	
–  Same	idea	as	gdb:	step	through	your	code	and	examine	variables	
–  See	h8p://www.allinea.com/tutorials/ge�ng-started-allinea-ddt-and-mpi-program	
	

Allinea	DDT	window	

Final	remark	

Don’t	waste	your	1me…	use	a	debugger!	

